The Error Probability of Random Fourier Features is Dimensionality Independent

نویسندگان

  • Jean Honorio
  • Yu-Jun Li
چکیده

We show that the error probability of reconstructing kernel matrices from Random Fourier Features for any shift-invariant kernel function is at most O(exp(−D)), where D is the number of random features. We also provide a matching informationtheoretic method-independent lower bound of Ω(exp(−D)) for standard Gaussian distributions. Compared to prior work, we are the first to show that the error probability for random Fourier features is independent of the dimensionality of data points as well as the size of their domain. As applications of our theory, we obtain dimension-independent bounds for kernel ridge regression and support vector machines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Deep Semi-Random Features for Nonlinear Function Approximation

We propose semi-random features for nonlinear function approximation. The flexibility of semirandom feature lies between the fully adjustable units in deep learning and the random features used in kernel methods. For one hidden layer models with semi-random features, we prove with no unrealistic assumptions that the model classes contain an arbitrarily good function as the width increases (univ...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

Spherical Random Features for Polynomial Kernels

Compact explicit feature maps provide a practical framework to scale kernel methods to large-scale learning, but deriving such maps for many types of kernels remains a challenging open problem. Among the commonly used kernels for nonlinear classification are polynomial kernels, for which low approximation error has thus far necessitated explicit feature maps of large dimensionality, especially ...

متن کامل

Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison

Both random Fourier features and the Nyström method have been successfully applied to efficient kernel learning. In this work, we investigate the fundamental difference between these two approaches, and how the difference could affect their generalization performances. Unlike approaches based on random Fourier features where the basis functions (i.e., cosine and sine functions) are sampled from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.09953  شماره 

صفحات  -

تاریخ انتشار 2017